Joint Multi-Image Saliency Analysis for Region of Interest Detection in Optical Multispectral Remote Sensing Images
نویسندگان
چکیده
The automatic detection of regions of interest (ROI) is useful for remote sensing image analysis, such as land cover classification, object recognition, image compression, and various computer vision related applications. Recently, approaches based on visual saliency have been utilized for ROI detection. However, most existing methods focus on detecting ROIs from a single image, which generally cannot precisely extract ROIs against a complicated background or exclude images with no ROIs. In this paper, we propose a joint multi-image saliency (JMS) algorithm to simultaneously extract the common ROIs in a set of optical multispectral remote sensing images with the additional ability to identify images that do not contain the common ROIs. First, bisecting K-means clustering on the entire image set allows us to extract the global correspondence among multiple images in RGB and CIELab color spaces. Second, clusterwise saliency computation aggregating global color and shape contrast efficiently assigns common ROIs with high saliency, while effectively depressing interfering background that is salient only within its own image. Finally, binary ROI masks are generated by thresholding saliency maps. In addition, we construct an edge-preserving JMS model through edge-preserving mask optimization strategy, so as to facilitate the generation of a uniformly highlighted ROI mask with sharp borders. Experimental results demonstrate the advantages of our model in detection accuracy consistency and runtime efficiency.
منابع مشابه
Combining of Magnitude and Direction of Change Indices to Unsupervised Change Detection in Multitemporal Multispectral Remote Sensing Images
In remote sensing, image-based change detection techniques, analyze two images acquired over the same area at different times t1 and t2 to identify the changes occurred on the Earth's surface. Change detection approaches are mainly categorized as supervised and unsupervised. Generating the change index is a key step for change detection in multi-temporal remote sensing images. Unsupervised chan...
متن کاملRegion-of-Interest Extraction Based on Local-Global Contrast Analysis and Intra-Spectrum Information Distribution Estimation for Remote Sensing Images
Traditional saliency analysis models have made great advances in region of interest (ROI) extraction in natural scene images and videos. However, due to different imaging mechanisms and image features, those approaches are not quite appropriate for remote sensing images. Thus, we propose a novel saliency analysis and ROI extraction method for remote sensing images, which is composed of local–gl...
متن کاملSalient regions detection in satellite images using the combination of MSER local features detector and saliency models
Nowadays, due to quality development of satellite images, automatic target detection on these images has been attracted many researchers' attention. Remote-sensing images follow various geospatial targets; these targets are generally man-made and have a distinctive structure from their surrounding areas. Different methods have been developed for automatic target detection. In most of these met...
متن کاملAutomatic Road Detection and Extraction From MultiSpectral Images Using a New Hierarchical Object-based Method
Road detection and Extraction is one of the most important issues in photogrammetry, remote sensing and machine vision. A great deal of research has been done in this area based on multispectral images, which are mostly relatively good results. In this paper, a novel automated and hierarchical object-based method for detecting and extracting of roads is proposed. This research is based on the M...
متن کاملAnomaly delineation of porphyry copper deposits of Hanza Region through geochemical data analyses and multispectral remote sensing
Hanza region is located in the southern part of Urumieh–Dokhtar Metallogenic belt in southeastern Iran. This region includes six known porphyry copper deposits and it is considered as an ore- bearing region from geochemical point of view. The aim of this research is to examine effective processing techniques in the analysis of stream sediment geochemical datasets and ASTER satellite images. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016